
Statistics textbooks in the social, behavioral, and biomed-
ical sciences typically stress the importance of power analy-
ses. By definition, the power of a statistical test is the prob-
ability that its null hypothesis (H0) will be rejected given that 
it is in fact false. Obviously, significance tests that lack sta-
tistical power are of limited use because they cannot reliably 
discriminate between H0 and the alternative hypothesis (H1) 
of interest. However, although power analyses are indispens-
able for rational statistical decisions, it was not until the late 
1980s that power charts (see, e.g., Scheffé, 1959) and power 
tables (see, e.g., Cohen, 1988) were supplemented by more 
efficient, precise, and easy-to-use power analysis programs 
for personal computers (Goldstein, 1989). G*Power 2 (Erd-
felder, Faul, & Buchner, 1996) can be seen as a second-
 generation power analysis program designed as a stand-
alone application to handle several types of statistical tests 
commonly used in social and behavioral research. In the past 
10 years, this program has been found useful not only in the 
social and behavioral sciences but also in many other disci-
plines that routinely apply statistical tests, including biology 
(Baeza & Stotz, 2003), genetics (Akkad et al., 2006), ecol-
ogy (Sheppard, 1999), forest and wildlife research (Mellina, 
Hinch, Donaldson, & Pearson, 2005), the geosciences (Bus-
bey, 1999), pharmacology (Quednow et al., 2004), and med-
ical research (Gleissner, Clusmann, Sassen, Elger, & Helm-
staedter, 2006). G*Power 2 was evaluated positively in the 

reviews of which we are aware (Kornbrot, 1997; Ortseifen, 
Bruckner, Burke, & Kieser, 1997; Thomas & Krebs, 1997). 
It has been used in several power tutorials (e.g., Buchner, 
Erdfelder, & Faul, 1996, 1997; Erdfelder, Buchner, Faul, & 
Brandt, 2004; Levin, 1997; Sheppard, 1999) and in statis-
tics textbooks (e.g., Field, 2005; Keppel & Wickens, 2004; 
Myers & Well, 2003; Rasch, Friese, Hofmann, & Naumann, 
2006a, 2006b). Nevertheless, the user feedback that we re-
ceived coincided with our own experience in showing some 
limitations and weaknesses of G*Power 2 that required a 
major extension and revision.

In the present article, we describe G*Power 3, a program 
that was designed to address the problems of G*Power 2. 
We begin with an outline of the major improvements in 
G*Power 3 and then discuss the types of power analyses cov-
ered by this program. Next, we describe program handling 
and the types of statistical tests to which it can be applied. 
We then discuss the statistical algorithms of G*Power 3 and 
their accuracy. Finally, program availability and some Inter-
net resources supporting users of G*Power 3 are described.

IMPROVEMENTS IN G*POWER 3 IN 
COMPARISON WITH G*POWER 2

G*Power 3 is an improvement over G*Power 2 in five 
major respects. First, whereas G*Power 2 requires the 
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DOS and Mac OS 7–9 operating systems that were com-
mon in the 1990s but are now outdated, G*Power 3 runs 
on the personal computer platforms currently in widest 
use: Windows XP, Windows Vista, and Mac OS X 10.4. 
The Windows and Mac versions of the program are es-
sentially equivalent. They use the same computational 
routines and share very similar user interfaces. For this 
reason, we will not differentiate between these versions in 
what follows; users simply have to make sure to download 
the version appropriate for their operating system.

Second, whereas G*Power 2 is limited to three types 
of power analyses, G*Power 3 supports five different 
ways to assess statistical power. In addition to the a pri-
ori, post hoc, and compromise power analyses that were 
already covered by G*Power 2, the new program offers 
sensitivity analyses and criterion analyses.

Third, G*Power 3 provides dedicated power analysis 
options for a variety of frequently used t, F, z, 2, and 
exact tests in addition to the standard tests covered by 
G*Power 2. The tests captured by G*Power 3 and their 
effect size parameters are described in the Program Han-
dling section. Importantly, users are not limited to these 
tests because G*Power 3 also offers power analyses for 
generic t, F, z, 2, and binomial tests for which the non-
centrality parameter of the distribution under H1 may 
be entered directly. In this way, users are provided with 
a flexible tool for computing the power of basically any 
statistical test that uses t, F, z, 2, or binomial reference 
distributions.

Fourth, statistical tests can be specified in G*Power 3 
using two different approaches: the distribution-based ap-
proach and the design-based approach. In the distribution-
based approach, users select the family of the test statistic 
(t, F, z, 2, or exact test) and the particular test within 
that family. This is how power analyses were specified in 
G*Power 2. In addition, a separate menu in G*Power 3 
provides access to power analyses via the design-based 
approach: Users select (1) the parameter class to which 
the statistical test refers (correlations, means, proportions, 
regression coefficients, variances) and (2) the design of 
the study (e.g., number of groups, independent vs. depen-
dent samples). On the basis of the feedback we received 
about G*Power 2, we expect that some users might find 
the design-based input mode more intuitive and easier to 
use.

Fifth, G*Power 3 supports users with enhanced graph-
ics features. The details of these features will be outlined 
in the Program Handling section.

TYPES OF STATISTICAL POWER ANALYSES

The power (1  ) of a statistical test is the complement 
of , which denotes the Type II or beta error probability 
of falsely retaining an incorrect H0. Statistical power de-
pends on three classes of parameters: (1) the significance 
level (i.e., the Type I error probability)  of the test, (2) the 
size(s) of the sample(s) used for the test, and (3) an effect 
size parameter defining H1 and thus indexing the degree 
of deviation from H0 in the underlying population. De-
pending on the available resources, the actual phase of the 

research process, and the specific research question, five 
different types of power analysis can be reasonable (cf. 
Erdfelder et al., 2004; Erdfelder, Faul, & Buchner, 2005). 
We describe these methods and their uses in turn.

A Priori Power Analyses
In a priori power analyses (Cohen, 1988), sample 

size N is computed as a function of the required power 
level (1  ), the prespecified significance level , and 
the population effect size to be detected with probability 
1  . A priori analyses provide an efficient method of 
controlling statistical power before a study is actually con-
ducted (see, e.g., Bredenkamp, 1969; Hager, 2006) and 
can be recommended whenever resources such as the time 
and money required for data collection are not critical.

Post Hoc Power Analyses
In contrast to a priori power analyses, post hoc power 

analyses (Cohen, 1988) often make sense after a study 
has already been conducted. In post hoc analyses, 1   
is computed as a function of , the population effect size 
parameter, and the sample size(s) used in a study. It thus 
becomes possible to assess whether or not a published 
statistical test in fact had a fair chance of rejecting an in-
correct H0. Importantly, post hoc analyses, like a priori 
analyses, require an H1 effect size specification for the 
underlying population. Post hoc power analyses should 
not be confused with so-called retrospective power anal-
yses, in which the effect size is estimated from sample 
data and used to calculate the observed power, a sample 
estimate of the true power.1 Retrospective power analy-
ses are based on the highly questionable assumption that 
the sample effect size is essentially identical to the effect 
size in the population from which it was drawn (Zumbo & 
Hubley, 1998). Obviously, this assumption is likely to be 
false, and the more so the smaller the sample. In addition, 
sample effect sizes are typically biased estimates of their 
population counterparts (Richardson, 1996). For these 
reasons, we agree with other critics of retrospective power 
analyses (e.g., Gerard, Smith, & Weerakkody, 1998; Hoe-
nig & Heisey, 2001; Kromrey & Hogarty, 2000; Lenth, 
2001; Steidl, Hayes, & Schauber, 1997). Rather than use 
retrospective power analyses, researchers should specify 
population effect sizes on a priori grounds. To specify the 
effect size simply means to define the minimum degree 
of violation of H0 a researcher would like to detect with 
a probability not less than 1  . Cohen’s definitions of 
small, medium, and large effects can be helpful in such 
effect size specifications (see, e.g., Smith & Bayen, 2005). 
However, researchers should be aware of the fact that 
these conventions may have different meanings for differ-
ent tests (cf. Erdfelder et al., 2005).

Compromise Power Analyses
In compromise power analyses (Erdfelder, 1984; 

Erdfelder et al., 1996; Müller, Manz, & Hoyer, 2002), 
both  and 1   are computed as functions of the ef-
fect size, N, and the error probability ratio q  / . To 
illustrate, setting q to 1 would mean that the researcher 
prefers balanced Type I and Type II error risks (   ), 
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whereas a q of 4 would imply that   4  (cf. Cohen, 
1988). Compromise power analyses can be useful both 
before and after data collection. For example, an a priori 
power analysis might result in a sample size that exceeds 
the available resources. In such a situation, a researcher 
could specify the maximum affordable sample size and, 
using a compromise power analysis, compute  and 1   
associated with, say, q  /   4. Alternatively, if a study 
has already been conducted but has not yet been analyzed, 
a researcher could ask for a reasonable decision criterion 
that guarantees perfectly balanced error risks (i.e.,   ) 
given the size of the sample and the critical effect size 
in which he or she is interested. Of course, compromise 
power analyses can easily result in unconventional sig-
nificance levels greater than   .05 (in the case of small 
samples or effect sizes) or less than   .001 (in the case 
of large samples or effect sizes). However, we believe that 
the benefit of balanced Type I and Type II error risks often 
offsets the costs of violating significance level conven-
tions (cf. Gigerenzer, Krauss, & Vitouch, 2004).

Sensitivity Analyses
In sensitivity analyses, the critical population effect size 

is computed as a function of , 1  , and N. Sensitivity 
analyses may be particularly useful for evaluating pub-
lished research. They provide answers to questions such as 
“What effect size was a study able to detect with a power 
of 1    .80 given its sample size and  as specified 
by the author? In other words, what is the minimum ef-
fect size to which the test was sufficiently sensitive?” In 
addition, it may be useful to perform sensitivity analyses 
before conducting a study to see whether, given a lim-
ited N, the size of the effect that can be detected is at all 
realistic (or, for instance, much too large to be expected 
realistically).

Criterion Analyses
Finally, criterion analyses compute  (and the associ-

ated decision criterion) as a function of 1  , the effect 
size, and a given sample size. Criterion analyses are alter-
natives to post hoc power analyses. They may be reason-
able whenever the control of  is less important than the 
control of . In case of goodness-of-fit tests for statistical 
models, for example, it is most important to minimize the 

 risk of wrong decisions in favor of the model (H0). Re-
searchers could thus use criterion analyses to compute the 
significance level  which is compatible with   .05 for 
a small effect size.

Whereas G*Power 2 was limited to the first three types 
of power analysis, G*Power 3 covers all five types. On the 
basis of the feedback we received from G*Power 2 users, 
we believe that any question related to statistical power 
that arises in research practice can be categorized under 
one of these analysis types.

PROGRAM HANDLING

Using G*Power 3 typically involves the following 
four steps: (1) Select the statistical test appropriate for 
the problem, (2) choose one of the five types of power 

analyses defined in the previous section, (3) provide the 
input parameters required for the analysis, and (4) click on 
“Calculate” to obtain the results.

In the first step, the statistical test is chosen using 
the distribution-based or the design-based approach. 
G*Power 2 users probably have adapted to the distribution-
based approach: One first selects the family of the test 
statistic (t, F, z, 2, or exact test) using the “Test fam-
ily” menu in the main window. The “Statistical test” menu 
adapts accordingly, showing a list of all tests available for 
the test family. For the two-groups t test, for example, one 
would first select the t family of distributions and then 
“Means: Difference between two independent means (two 
groups)” in the “Statistical test” menu (see Figure 1). Al-
ternatively, one might use the design-based approach of 
test selection. With the “Tests” pull-down menu in the top 
row, it is possible to select (1) the parameter class to which 
the statistical test refers (i.e., correlation and regression, 
means, proportions, variances, or generic) and (2) the de-
sign of the study (e.g., number of groups, independent 
vs. dependent samples). For example, a researcher would 
select “Means” followed by “Two independent groups” to 
specify the two-groups t test (see Figure 2). The design-
based approach has the advantage that test options refer-
ring to the same parameter class (e.g., means) are located 
in close proximity, whereas in the distribution-based ap-
proach they may be scattered across different distribution 
families.

In the second step, the “Type of power analysis” menu 
in the center of the main window should be used to choose 
the appropriate analysis type. In the third step, the power 
analysis input parameters are specified in the lower left of 
the main window. To illustrate, an a priori power analysis 
for a two-groups t test would require a decision between a 
one-tailed and a two-tailed test, a specification of Cohen’s 
(1988) effect size measure (d ) under H1, the significance 
level , the required power (1  ) of the test, and the 
preferred group size allocation ratio n2/n1. The final step 
consists of clicking on “Calculate” to obtain the output in 
the lower right of the main window.

For instance, input parameters specifying a one-tailed 
t test, a medium effect size of d  0.5,   .05, 1    
.95, and an allocation ratio of n2/n1  1 would result in 
a total sample size of N  176 (88 observation units in 
each group; see Figures 1 and 2). The noncentrality pa-
rameter  defining the t distribution under H1, the decision 
criterion to be used (i.e., the critical value of the t statis-
tic), the degrees of freedom2 of the t test, and the actual 
power value are also displayed. Note that the actual power 
will often be slightly larger than the prespecified power 
in a priori power analyses. The reason is that noninteger 
sample sizes are always rounded up by G*Power to obtain 
integer values consistent with a power level not lower than 
the prespecified one.

In addition to the numerical output, G*Power 3 dis-
plays the central (H0) and the noncentral (H1) test statistic 
distributions along with the decision criterion and the as-
sociated error probabilities in the upper part of the main 
window (see Figure 1).3 This supports understanding of 
the effects of the input parameters and is likely to be a 



178    FAUL, ERDFELDER, LANG, AND BUCHNER

useful visualization tool in the teaching of, or the learning 
about, inferential statistics. The distributions plot can be 
printed, saved, or copied by clicking on the right mouse 
button inside the plot area.

The input and output of each power calculation in a 
G*Power session is automatically written to a protocol 
that can be displayed by selecting the “Protocol of power 
analyses” tab in the main window. It is possible to clear 
the protocol or to print, save, and copy the protocol in the 
same way as the distributions plot.

Because Cohen’s (1988) book on power analysis appears 
to be well-known in the social and behavioral sciences, we 
made use of his effect size measures whenever possible. 
Researchers unfamiliar with these measures and users 
who prefer to compute Cohen’s measures from more basic 
parameters can click on the “Determine” button to the left 
of the “Effect size” input field (see Figures 1 and 2). A 
drawer will open next to the main window and provide 
access to an effect size calculator tailored to the selected 
test (see Figure 2). For the two-groups t test, for example, 
users can specify the means ( 1, 2) and the common SD 

( ) in the populations underlying the groups to calculate 
Cohen’s d  | 1  2 |/ . Clicking on the “Calculate and 
transfer to main window” button copies the computed ef-
fect size to the appropriate field in the main window.

Another useful option is the Power Plot window (see 
Figure 3), which is opened by clicking on “X–Y plot for a 
range of values” on the lower right side of the main win-
dow (see Figures 1 and 2).

By selecting the appropriate parameters for the y- and 
x-axes, one parameter ( , 1  , effect size, or sample size) 
can be plotted as a function of any other parameter. Of the 
remaining two parameters, one can be chosen to draw a fam-
ily of graphs, whereas the fourth parameter is kept constant. 
For instance, sample size can be drawn as a function of the 
power 1   for several different population effects sizes 
while  is kept at a particular value. The plot may be printed, 
saved, or copied by clicking on the right mouse button inside 
the plot area. Selecting the “Table” tab reveals the data un-
derlying the plot; they may be copied to other applications.

The Power Plot window inherits all input parameters of 
the analysis that is active when the “X–Y plot for a range of 

Figure 1. The distribution-based approach of test specification in G*Power 3.0.
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Figure 2. The design-based approach of test specification in G*Power 3.0 and the “Effect size” drawer.

Figure 3. The Power Plot window of G*Power 3.0.
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values” button is clicked. Only some of these parameters 
can be directly manipulated in the Power Plot window. For 
instance, switching from a plot of a two-tailed test to a plot 
of a one-tailed test requires choosing the “Tail(s): One” 
option in the main window and then clicking on the “X–Y 
plot for a range of values” button.

TYPES OF STATISTICAL TESTS

G*Power 3 provides power analyses for test statistics 
following t, F, 2, or standard normal distributions under 
H0 (either exact or asymptotic) and noncentral distributions 
of the same test families under H1. In addition, it includes 
power analyses for some exact tests. In Tables 2–9, we 
briefly describe the tests currently covered by G*Power 3. 
Table 1 lists the symbols used in Tables 2–9 and their 
meanings.

Tests for Correlation and Regression
Table 2 summarizes the procedures supported for test-

ing hypotheses on correlation and regression. One-sample 
tests are provided for the point–biserial model—that is, 
the model for correlations between a binary variable and 
a continuous variable—and for correlations between two 
normally distributed variables (Cohen, 1988, chap. 3).4 
The latter test uses the exact sample correlation coefficient 
distribution (Barabesi & Greco, 2002) or, optionally, a 
large-sample approximation based on Fisher’s r-to-z trans-
formation. The two-sample test for differences between 
two correlations uses Cohen’s (1988, chap. 4) effect size q 
and is based on Fisher’s r-to-z transformation. Cohen de-
fines qs of 0.10, 0.30, and 0.50 as small, medium, and large 
effects, respectively.

The two procedures available for the multiple regres-
sion model handle the cases of (1) a test of an overall 
 effect—that is, the hypothesis that the population value 
of R2 is different from zero—and (2) a test of the hypoth-

esis that adding more predictors increases the value of R2 
(Cohen, 1988, chap. 9). According to Cohen’s criteria, 
effect sizes ( f 2) of 0.02, 0.15, and 0.35 are considered 
small, medium, and large, respectively.

Tests for Means (Univariate Case)
Table 3 summarizes the power analysis procedures for 

tests on means. G*Power 3 supports all cases of the t test 
for means described by Cohen (1988, chap. 2): the test for 
independent means, the test of the null hypothesis that the 
population mean equals some specified value (one sample 
case), and the test on the means of two dependent samples 
(matched pairs). Cohen’s d and dz are used as effect size 
indices. Cohen defines ds of 0.2, 0.5, and 0.8 as small, 
medium, and large effects, respectively. Effect size dialogs 
are available to compute the appropriate effect size param-
eter from means and SDs. For example, assume we want to 
compare visual search times for targets embedded in rare 
versus frequent local contexts in a within-subjects design 
(cf. Hoffmann & Sebald, 2005, Experiment 1). It is ex-
pected that the mean search time for targets in rare contexts 
(e.g., 600 msec) should decrease by at least 10 msec (i.e., 
to 590 msec) in frequent contexts as a consequence of local 
contextual cuing. If prior evidence suggests population 
SDs of, say,   25 msec in each of the conditions and a 
correlation of   .70 between search times in the two con-
ditions, we can use the “Effect size” drawer of G*Power 3 
for the matched pairs t test to calculate the effect size dz  
0.516 (see the second row of Table 3 for the formula). By 
selecting a post hoc power analysis for one-tailed matched 
pairs t tests, we easily see that for dz  0.516,   .05, and 
N  16 participants, the power (1  ) is only .47. Thus, 
provided that the assumptions outlined above are appropri-
ate, the nonsignificant statistic [t(15)  1.475] obtained by 
Hoffmann and Sebald (2005, Experiment 1, p. 34) might 
in fact be due to a Type II error. This interpretation would 
be consistent with the fact that Hoffmann and Sebald ob-

Table 1 
Symbols and Their Meanings As Used in the Tables

Symbols  Meaning

 ( i) population mean (in group i)
 ( i) vector of population means (in group i)
x y population mean of the difference

N total sample size
ni sample size in group i

standard deviation in the population
standard deviation of the effect

x y standard deviation of the difference
noncentrality parameter of the noncentral F and 2 distribution
noncentrality parameter of the noncentral t distribution

df degrees of freedom
df1, df2 numerator and denominator degrees of freedom, respectively

 ( i) population correlation (in group i)
R2

Y A, R2
Y A,B squared multiple correlation coefficients, corresponding to the proportion of Y 

variance that can be accounted for by multiple regression on the set of predictor 
variables A and A B, respectively
population variance–covariance matrix

M matrix of regression parameters (population means)
C contrast matrix (contrasts between rows of M)
A contrast matrix (contrasts between columns of M)

 ( i)  probability of success (in group i)
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served significant local contextual cuing effects in each of 
the other four experiments they reported. 

The procedures provided by G*Power 3 to test effects in 
between-subjects designs with more than two groups (i.e., 
one-way ANOVA designs and general main effects and 
interactions in factorial ANOVA designs of any order) are 
identical to those in G*Power 2 (Erdfelder et al., 1996). In 
all these cases, the effect size f as defined by Cohen (1988) 
is used. In a one-way ANOVA, the “Effect size” drawer 
can be used to compute f from the means and group sizes 
of k groups and an SD common to all groups. For tests of 
effects in factorial designs, the “Effect size” drawer offers 
the possibility of computing effect size f from the vari-
ance explained by the tested effect and the error variance. 
Cohen defines fs of 0.1, 0.25, and 0.4 as small, medium, 
and large effects, respectively.

New in G*Power 3 are procedures for analyzing main 
effects and interactions for A  B mixed designs, where 
A is a between-subjects factor (or an enumeration of 
the groups generated by cross-classification of several 
 between-subjects factors) and B is a within-subjects fac-
tor (or an enumeration of the repeated measures generated 
by cross-classification of several within-subjects factors). 
Both the univariate and the multivariate approaches to re-
peated measures (O’Brien & Kaiser, 1985) are supported. 
The multivariate approach will be discussed below. The 
univariate approach is based on the sphericity assump-
tion. This assumption is correct if (in the population) all 
variances of the repeated measurements are equal and all 
correlations between pairs of repeated measurements are 
equal. If all the distributional assumptions are met, then the 
univariate approach is the most powerful method (Muller 
& Barton, 1989; O’Brien & Kaiser, 1985). Unfortunately, 
the assumption of equal correlations is violated quite 
often, which can lead to very misleading results. In order 

to compensate for such adverse effects in tests of within 
effects or between–within interactions, the noncentrality 
parameter and the degrees of freedom of the F distribu-
tion can be multiplied by a correction factor  (Geisser & 
Greenhouse, 1958; Huynh & Feldt, 1970).   1 if the 
sphericity assumption is met and approaches 1/(m  1) 
with increasing degrees of violation of sphericity, where 
m denotes the number of repeated measurements.

G*Power provides three separate yet very similar rou-
tines to calculate power in the univariate approach for 
between effects, within effects, and interactions. If the to-
be-detected effect size f is known, these procedures are 
very easy to apply. To illustrate, Berti, Münzer, Schröger, 
and Pechmann (2006) compared the pitch discrimination 
ability of 10 musicians and 10 control subjects (between-
subjects factor A) for 10 different interference conditions 
(within-subjects factor B). Assuming that A, B, and A  
B effects of medium size ( f  0.25; see Cohen, 1988; 
Table 3 of the present article) should be detected given a 
correlation of   .50 between repeated measures and a 
significance level of   .05, the power values of the F 
tests for the A main effect, the B main effect, and the A  
B interaction are easily computed as .30, .95, and .95, re-
spectively, by inserting f  0.25,   .05, the total sample 
size (20), the number of groups (2), the number of repeti-
tions (10), and   .50 into the appropriate input fields of 
the procedures designed for these tests.

If the to-be-detected effect size f is unknown, it must be 
computed from more basic parameters characterizing the 
expected population scenario under H1. To demonstrate 
the general procedure, we will show how to do post hoc 
power analyses in the scenario illustrated in Figure 4 as-
suming the variance and correlations structure defined 
in matrix SR1. We first consider the power of the within 
effect: We select the “F tests” family, the “Repeated mea-

Table 2 
Tests for Correlation and Regression

Test Null Noncentrality Parameter
Test  Family  Hypothesis  Effect Size  Other Parameters  and Degrees of Freedom

Difference from t tests   0 2

21
Nzero: point biserial 

model
df  N  2

Difference from 
constant
(bivariate normal)

exact 
tests

  c Constant 
correlation c

Inequality of two 
correlation
coefficients 

z tests 1  2 q  z1  z2

zi
i

i

1
2

1
1

ln

m q
s1

s
n n

n n
1 2

1 2

6
3 3

Multiple 
regression: 
deviation of R2

from zero

F tests R2
Y A  0

f
R
R
Y A

Y A

2
2

21

Number of 
predictors p (#A)

  f 2 N
df1  p
df2  N  p  1

Multiple 
regression:
increase of R2

F tests R2
Y A,B  R2

Y A
f

R R

R
Y A B Y A

Y A B

2
2 2

21
,

,

Total number of
predictors p
(#A  #B)
Number of tested

  f 2 N
df1  q
df2  N  p  1

        predictors q (#B)   
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sures: Within factors, ANOVA-approach” test, and “post 
hoc” as the type of power analysis. Both the “Number of 
groups” and “Repetitions” fields are set to 3. Total sample 
size is set to 90 and  error probability to .05. Referring 

to matrix SR1, we insert .3 in the “Corr among rep mea-
sures” input field and—since sphericity obviously holds 
in this case—set nonsphericity correction  to 1. To deter-
mine effect size f, we first calculate 2, the variance of the 

Table 3 
Tests for Means (Univariate Case)

Test Null Noncentrality Parameter
Test  Family  Hypothesis  Effect Size  Other Parameters  and Degrees of Freedom

Difference from 
constant (one-
sample case)

t tests   c d c   d 
__

 N  
df  N  1

Inequality of 
two dependent
means 
(matched pairs)

t tests x y  0
dz

x y

x y

  dz 
__

 N  
df  N  1

x y x y x y
2 2 2

Inequality of 
two independent
means

t tests 1  2 d 1 2

d
n n
n n

1 2

1 2

df  N  2

ANOVA, fixed 
effects, one
way: inequality
of multiple
means

F tests i    0
i  1, . . . , k f Number of 

groups k
  f 2N

df1  k  1
df2  N  k

2

2

1

n

N

j i
i

k

ANOVA, fixed 
effects, 
multifactor
designs, and 
planned 
comparisons 

F tests i    0
i  1, . . . , k f Total number of 

cells in the 
design k
Degrees of 
freedom of the 
tested effect q

  f 2N
df1  q
df2  N  k

ANOVA:
repeated
measures,
between effects

F tests i    0
i  1, . . . , k f Levels of

between factor k
  f 2uN

u m
m1 1( )

Levels of
repeated measures 
factor m

df1  k  1
df2  N  k

ANOVA: 
repeated
measures,
within effects

F tests i    0
i  1, . . . , m f   f 2uN

u m
1Population 

correlation df1  (m  1)
among repeated 
measures 

df2  (N  k)(m  1)

ANOVA: 
repeated 
measures, 
between–within 
interactions

F tests ij  i  . . .
j    0

i  1, . . . , k
j  1, . . . , m

f   f 2uN
u m

1For within and 
within–between df1  (k  1)(m  1)
interactions: df2  (N  k)(m  1)
Nonsphericity 
correction 

 Time 1 Time 2 Time 3 i• ni

Group 1 10 15 20 15 30

Group 2 10 12 15 12.333 30

Group 3 10 12 12 11.333 30

•j 10 13 15.667 ••  12.889  

SR SR2 1

10 0 3 0 1

0 3 9 0 3

0 1 0 3 8

9 0. .

. .

. .

.. .

. .

. .

3 0 3

0 3 9 0 3

0 3 0 3 9

Figure 4. Sample 3  3 repeated measures designs. Three groups are repeatedly measured at three dif-
ferent times. The shaded portion of the table is the postulated matrix M of population means ij. The last 
column of the table contains the sample size of each group. The symmetric matrices SRi specify two dif-
ferent covariance structures between measurements taken at different times: The main diagonal contains 
the SDs of the measurements at each time, and the off-diagonal elements contain the correlations between 
pairs of measurements taken at different times.
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within effect. From the three column means •j of matrix 
M and the grand mean ••, we get

2

(10 12.889) (13 12.889) (15.667 12.882 2 99)

5.35679.

2

3

Clicking on the “Determine” button next to the “Effect 
size” label opens the “Effect size” drawer. We choose the 
“From variances” option and set “Variance explained by 
special effect” to 5.357 and “Variance within groups” to 
92  81. Clicking on the “Calculate and transfer to main 
window” button calculates an effect size f  0.2572 and 
transfers f to the effect size field in the main window. 
Clicking on “Calculate” yields the results: The power is 
.997, the critical F value with df1  2 and df2  174 is 
3.048, and the noncentrality parameter  is 25.52. The 
procedure for tests of between–within interactions ef-
fects (“Repeated measures: Within–between interac-
tions, ANOVA-approach”) is almost identical to that just 
described. The only difference is in how the effect size f 
is computed. Here, we first calculate the variance of the 
residual values ij  i•  •j  •• of matrix M:

2

210 10 15 12 889 12 15 667 11 33( . ) . . . ( . . 33 12 889
9 0

1 90123

2. )
.

. .

Using the “Effect size” drawer in the same way as above, 
we get an effect size f  0.1532, which results in a power of 
.653. To test between effects, we choose “Repeated measures: 
Between factors, ANOVA-approach” and set all parameters 
to the same values as before. Note that in this case we do not 
need to specify —no correction is necessary because tests 
of between factors do not require the sphericity assumption. 
To calculate the effect size, we use “Effect size from means” 
in the “Effect size” drawer. We select three groups, set “SD 

 within each group” to 9, and insert for each group the cor-
responding row mean i• of M (15, 12.3333, 11.3333) and 
an equal group size of 30. Effect size f  0.1719571 is cal-
culated, and the resulting power is .488.

Note that G*Power 3 can easily handle pure repeated 
measures designs without any between-subjects factors 
(see, e.g., Frings & Wentura, 2005; Schwarz & Müller, 
2006) by choosing the “Repeated measures: Within fac-
tors, ANOVA-approach” procedure and setting the num-
ber of groups to 1.

Tests for Mean Vectors (Multivariate Case)
G*Power 3 contains several procedures for performing 

power analyses in multivariate designs (see Table 4). All 
these tests belong to the F test family.

The Hotelling T 2 tests are extensions of univariate 
t tests to the multivariate case, in which more than one 
dependent variable is measured: Instead of two single 
means, two mean vectors are compared, and instead of a 
single variance, a variance–covariance matrix is consid-
ered (Rencher, 1998). In the one-sample case, H0 posits 

that the vector of population means is identical to a speci-
fied constant mean vector. The “Effect size” drawer can 
be used to calculate the effect size  from the difference 

  c  and the expected variance–covariance matrix under 
H1. For example, assume that we have two variables, a 
difference vector   c   (1.88, 1.88) under H1, vari-
ances 1

2  56.79, 2
2  29.28, and a covariance of 11.98 

(Rencher, 1998, p. 106). To perform a post hoc power 
analysis, choose “F tests,” then “Multivariate: Hotelling 
T 2, one group” and set the analysis type to “Post hoc.” 
Enter 2 in the “Response variables” field and then click 
on the “Determine” button next to the “Effect size” label. 
In the “Effect size” drawer, at “Input method: Means and 
. . . ,” choose “Variance–covariance matrix” and click on 
“Specify/edit input values.” Under the “Means” tab, insert 
1.88 in both input fields; under the “Cov sigma” tab, in-
sert 56.79 and 29.28 in the main diagonal and 11.98 as the 
off-diagonal element in the lower left cell. Clicking on the 
“Calculate and transfer to main window” button initiates 
the calculation of the effect size (0.380) and transfers it to 
the main window. For this effect size,   .05, and a total 
sample size of N  100, the power amounts to .9282. The 
procedure in the two-group case is exactly the same, with 
the following exceptions. First, in the “Effect size” drawer 
two mean vectors have to be specified. Second, the group 
sizes may differ.

The MANOVA tests in G*Power 3 refer to the multi-
variate general linear model (O’Brien & Muller, 1993; 
O’Brien & Shieh, 1999): Y  XB , where Y is N  
p of rank p, X is N  r of rank r, and the r  p matrix 
B contains fixed coefficients. The rows of  are taken to 
be independent p-variate normal random vectors with 
mean 0 and p  p positive definite covariance matrix . 
The multivariate general linear hypothesis is H0: CBA  

0, where C is c  r with full row rank and A is p  a 
with full column rank (in G*Power 3, 0 is assumed to be 
zero). H0 has df1  a c degrees of freedom. All tests of 
the hypothesis H0 refer to the matrices

H

CBU C X WX C CBU

H

N

N

T T T
0

1 1

0

*

and

E U UT N r ,

where Ẍ is a q  q essence model matrix, W is a q  q di-
agonal matrix containing weights wj  nj/N, and XTX  
N(ẌTWẌ) (see O’Brien & Shieh, 1999, p. 14). Let { 1

*, 
. . . , s

*} be the s  min(a,c) eigenvalues of E 1H* and 
{ 1, . . . , s} the s eigenvalues of E 1H/(N  r)—that is, 

i  i
*N/(N  r).

G*Power 3 offers power analyses for the multivariate 
model following either the approach outlined in Muller and 
Peterson (1984; Muller, LaVange, Landesman-Ramey, & 
Ramey, 1992) or, alternatively, the approach of O’Brien and 
Shieh (1999; Shieh, 2003). Both approaches approximate the 
exact distributions of Wilks’s U (Rao, 1951), the Hotelling–
Lawley T1 (Pillai & Samson, 1959), the Hotelling–Lawley 
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T2 (McKeon, 1974), and Pillai’s V (Pillai & Mijares, 1959) 
by F distributions and are asymptotically equivalent. Table 5 
outlines details of both approximations. The type of statistic 
(U, T1, T2, V ) and the approach (Muller & Peterson, 1984, 
or O’Brien & Shieh, 1999) can be selected in an Options 
dialog that can be evoked by clicking on the “Options” but-
ton at the bottom of the main window.

The approach of Muller and Peterson (1984) has found 
widespread use; for instance, it has been adopted in the 
SPSS software package. We nevertheless recommend the 
approach of O’Brien and Shieh (1999) because it has a 
number of advantages: (1) Unlike the method of Muller 
and Peterson, it provides the exact noncentral F distri-
bution whenever the hypothesis involves at most s  1 
positive eigenvalues; (2) its approximations for s  1 
eigenvalues are almost always more accurate than those 
of Muller and Peterson’s method (which systematically 
underestimates power); and (3) it provides a simpler form 
of the noncentrality parameter—that is,   * N, where 

* is not a function of the total sample size.
G*Power 3 provides procedures to calculate the power 

for global effects in a one-way MANOVA and for special 

effects and interactions in factorial MANOVA designs. 
These procedures are the direct multivariate analogues 
of the ANOVA routines described above. Table 5 sum-
marizes information that is needed in addition to the 
formulas given above to calculate effect size f from hy-
pothesized values for mean matrix M (corresponding to 
matrix B in the model), covariance matrix , and contrast 
matrix C, which describes the effect under scrutiny. The 
“Effect size” drawer can be used to calculate f from known 
values of the statistic U, T1, T2, or V. Note, however, that 
the transformation of T2 to f depends on the sample size. 
Thus, this test statistic seems not very well suited for 
a priori analyses. In line with Bredenkamp and Erdfelder 
(1985), we recommend V as the multivariate test statistic.

Another group of procedures in G*Power 3 supports 
the multivariate approach to power analyses of repeated 
measures designs. G*Power provides separate but very 
similar routines for the analysis of between effects, within 
effects, and interactions in simple A  B designs, where 
A is a between-subjects factor and B a within-subjects 
factor. To illustrate the general procedure, we describe 
in some detail a post hoc analysis of the within effect for 

Table 4 
Tests for Mean Vectors (Multivariate Case)

Test Null Noncentrality Parameter
Test  Family  Hypothesis  Effect Size  Other Parameters  and Degrees of Freedom

Hotelling T2: F tests   c    
_______

 v T 1 v  Number of   2N
difference from v    c response df1  k
constant mean variables k df2  N  k
vector

Hotelling T2: 
difference 
between two 
mean vectors

F tests 1  2    
_______

 v T 1 v  
v  1  2

Number of 
response 
variables k

2 1 2

1 2

n n
n n

df1  k
df2  N  k  1

MANOVA: 
global effects

F tests CM  0
Means matrix
M 
Contrast 
matrix C

Effect size
fmult
depends on the test 
statistics: 
• Wilks’s U 
• Hotelling–
• Lawley T1
• Hotelling–
• Lawley T2 
• Pillai’s V
and algorithms: 
• Muller & 
• Peterson 
• (1984) 
• O’Brien & 
• Shieh 
• (1999)

Number of 
groups g 
Number of 
response 
variables k

Noncentrality parameter 
and degrees of freedom 
depend on the test statistic 
and algorithm used (see 
Effect Size column and 
Table 5).

MANOVA: 
special effects

F tests Number of 
groups g
Number of 
predictors p
Number of 
response 
variables k

MANOVA:
repeated 
measures, 
between 
effects

F tests CMA  0
Means matrix 
M
Between 
contrast 
matrix C
Within 
contrast 
matrix A

Levels of 
between factor 
k
Levels of 
repeated 
measures factor 
m

       

MANOVA: 
repeated 
measures, 
within effects

F tests 

MANOVA: 
repeated 
measures, 
between–within 
interactions

F tests
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the scenario illustrated in Figure 4, assuming the variance 
and correlations structure defined in matrix SR2. We first 
choose “F tests,” then “Repeated measures: Within factors, 
MANOVA-approach.” In the “Type of power analysis” 
menu, we choose “Post hoc.” We click on the “Options” 
button to open a dialog in which we deselect the “Use mean 
correlation in effect size calculation” option. We choose 
Pillai’s V statistic and the O’Brien and Shieh algorithm. 
Back at the main window, we set both number of groups 
and repetitions to 3, total sample size to 90, and  error 
probability to .05. To compute the effect size f(V ) for the 
Pillai statistic, we open the “Effect size” drawer by clicking 
on the “Determine” button next to the “Effect size” label. 
In the “Effect size” drawer, select, as procedure, “Effect 
size from mean and variance–covariance matrix” and, as 
input method, “SD and correlation matrix.” Clicking on 
“Specify/edit matrices” opens another window, in which we 
specify the hypothesized parameters. Under the “Means” 
tab, we insert our means matrix M; under the “Cov sigma” 
tab, we choose “SD and correlation” and insert the values 
of SR2. Because this matrix is always symmetric, it suf-
fices to specify the lower diagonal values. After closing 
the dialog and clicking on “Calculate and transfer to main 

window,” we get a value of 0.1791 for Pillai’s V and the 
effect size f(V )  0.4672. Clicking on “Calculate” shows 
that the power is .980. The analyses of between effects and 
interaction effects are performed analogously.

Tests for Proportions
The support for tests on proportions has been greatly 

enhanced in G*Power 3. Table 6 summarizes the tests that 
are currently implemented. In particular, all tests on pro-
portions considered by Cohen (1988) are now available, 
including the sign test (chap. 5), the z tests for the differ-
ence between two proportions (chap. 6), and the 2 tests 
for goodness-of-fit and contingency tables (chap. 7).

The sign test is implemented as a special case (c  .5) of 
the more general binomial test (also available in G*Power 3) 
that a single proportion has a specified value c. In both 
procedures, Cohen’s (1988) effect size g is used and exact 
power values based on the binomial distribution are cal-
culated. Note, however, that, due to the discrete nature of 
the binomial distribution, the nominal value of  usually 
cannot be realized. Since the tables in chapter 5 of Cohen’s 
book use the  value closest to the nominal value, even if it 
is higher than the nominal value, the tabulated power values 

Table 5 
Approximating Univariate Statistics for Multivariate Hypotheses

Effect Size and 
Statistic  Formula  Numerator df2  Noncentrality Parameter

Wilks’s U
MP U k

k

s
1

1

1

df2 g(N  g1)  g2

g r a c
1

1
2

g ca
2

2
2

g

ca

ca
c a

ca

1 3

4
5

4
2

2 2
( )

f U U
U

g

g
( )

/

/
2

1

1
1

 f (U )2df2
Wilks’s U
OS U k

k

s
1

1

1

* f U U
U

g

g
( )

/

/
2

1

1
1

 Ng f (U )2

Pillai’s V
MP V k k

k

s
/ 1

1

df2  s(N  r  a  s) f V V
s V

( )
( )

2

 f (V )2 df2
Pillai’s V
OS V k k

k

s
* */ 1

1

f V V
s V

( )
( )

2

 Ns f (V )2

Hotelling–
Lawley T1
MP

T k
k

s

1

df2  s(N  r  a  1)  2 f (T )2  T/s
 f (T )2 df2

Hotelling–
Lawley T1
OS

T k
k

s
*

1

f (T )2  T/s
 Ns f (T )2

Hotelling–
Lawley T2
MP

T k
k

s

1

df2  4  (ca  2)g

g
N r N r g g

N r g g
( ) ( )

( )

2
4 3

2 1

g1 c  2a a2  1
g2  c a  1
g3  a(a  3)
g4  2a  3

h
df

N r a
2 2

1

f (T )2  T/h
 f (T )2 df2

Hotelling–
Lawley T2 
OS

T k
k

s
*

1

f (T )2  T/h
 Nh f (T )2

Note—MP, Muller–Peterson algorithm; OS, O’Brien and Shieh algorithm.  and * are eigenvalues of 
the effect size matrix (for details and the meaning of the variables a, c, r, and N, see text on p. 183).
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are sometimes larger than those calculated by G*Power 3. 
G*Power 3 always requires the actual  not to be larger than 
the nominal value.

Numerous procedures have been proposed to test the 
null hypothesis that two independent proportions are iden-
tical (Cohen, 1988; D’Agostino, Chase, & Belanger, 1988; 
Suissa & Shuster, 1985; Upton, 1982), and G*Power 3 
implements several of them. The simplest procedure is a z 
test with optional arcsin transformation and optional conti-
nuity correction. Besides these two computational options, 
one can also choose whether Cohen’s effect size measure h 
or, alternatively, two proportions are used to specify the 
alternate hypothesis. With the options “Use continuity cor-
rection” off and “Use arcsin transform” on, the procedure 
calculates power values close to those tabulated by Cohen 
(1988, chap. 6). With both “Use continuity correction” and 
“Use arcsin transform” off, the uncorrected 2 approxima-
tion is computed (Fleiss, 1981); with “Use continuity cor-
rection” on and “Use arcsin transform” off, the corrected 

2 approximation is computed (Fleiss, 1981).
A second variant is Fisher’s exact conditional test (Hase-

man, 1978). Normally, G*Power 3 calculates the exact 

unconditional power. However, despite the highly opti-
mized algorithm used in G*Power 3, long computation 
times may result for large sample sizes (e.g., N  1,000). 
Therefore, a limiting N can be specified in the Options 
dialog that determines at which sample size G*Power 3 
switches to a large sample approximation.

A third variant calculates the exact unconditional power 
for approximate test statistics T (Table 7 summarizes the 
supported statistics). The logic underlying this procedure 
is to enumerate all possible outcomes for the 2  2 bi-
nomial table, given fixed sample sizes n1, n2 in the two 
respective groups. This is done by choosing, as success 
frequencies x1 and x2 in the first and the second groups, 
respectively, any combination of the values 0  x1  n1 
and 0  x2  n2. Given the success probabilities 1, 2 in 
the two respective groups, the probability of observing a 
table X with success frequencies x1, x2 is

P X

n
x

n
x

x n x

| ,1 2

1

1
1 1

2

2

1 1 11 2 2
2 2 21x n x .

Table 6 
Tests for Proportions

Test Noncentrality
Test  Family  Hypothesis  Effect Size  Other Parameters  Parameter

Contingency
tables and
goodness of fit

2 tests 1i  0i
i  1, . . . , k

0
1

1i
i

k
w i i

ii

k
1 0

2

01

  w2N

Difference from 
constant (one-
sample case) 

exact
tests

  c g    c constant proportion c

Inequality of two 
dependent 
proportions 
(McNemar)

exact
tests

12/ 21  1 odds ratio  12/ 21 proportion of discordant 
pairs  12  21

Sign test exact
tests

  1/2 g    1/2

Inequality of two 
independent 
proportions

z tests 1  2 (A) alternate proportion: 2
(B) h  1  2
(A) i  2 arcsin  

__
 i  

(A) null proportion: 1

Inequality of two 
independent 
proportions 
(Fisher’s exact 
test)

exact
tests

1  2 alternate proportion: 1 null proportion: 2

Inequality of
two independent
proportions
(unconditional)

exact
tests

1  2 (A) alternate proportion: 1
(B) difference: 2  1
(C) risk ratio: 2/ 1

(D) odds ratio: 1 1

2 2

1
1

/
/

null proportion: 2

Inequality with 
offset of two 
independent 
proportions
(unconditional)

exact
tests

1  2  c (A) alternate proportion: 1|H1

(B) difference: 2  1|H1

(C) risk ratio: 2/ 1|H1

(D) odds ratio: 1 1

2 2

1 1
1

1
| |/

/
H H

(A) proportion: 1|H0

(B) difference: 2  1|H0

(C) risk ratio: 2/ 1|H0

(D) odds ratio: 1 1

2 2

0 0
1

1
| |/

/
H H

        (A) null proportion: 2   

Note—(A)–(D) indicate alternative effect size measures.
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To calculate power and the actual Type I error *, the 
test statistic T is computed for each table and compared 
with the critical value T . If A denotes the set of all ta-
bles X rejected by this criterion—that is, those with T  
T —then the power and the  level are given by

1 1 2P X
X A

| ,
and

* | , ,P X
X A 2 2

where 2 denotes the success probability in both groups 
as assumed in the null hypothesis. Note that the actual  
level can be larger than the nominal level! The preferred 
input method (proportions, difference, risk ratio, or odds 
ratio; see Table 6) and the test statistic to use (see Table 7) 
can be changed in the Options dialog. Note that the test 
statistic actually used to analyze the data must be chosen. 
For large sample sizes, the exact computation may take 
too much time. Therefore, a limiting N can be specified in 
the Options dialog that determines at which sample size 
G*Power switches to large sample approximations.

G*Power 3 also provides a group of procedures to test 
the hypothesis that the difference, risk ratio, or odds ratio 
of a proportion with respect to a specified reference pro-
portion  is different under H1 from a difference, risk ratio, 
or odds ratio of the same reference proportion assumed 
in H0. These procedures are available in the “Exact” test 
family as “Proportions: Inequality (offset), two indepen-
dent groups (unconditional).” The enumeration proce-
dure described above for the tests on differences between 
proportions without offset is also used in this case. In the 
tests without offset, the different input parameters (e.g., 
differences, risk ratio) are equivalent ways of specifying 

two proportions. The specific choice has no influence on 
the results. In the case of tests with offset, however, each 
input method has a different set of available test statistics. 
The preferred input method (see Table 6) and the test sta-
tistic to use (see Table 8) can be changed in the Options 
dialog. As in the other exact procedures, the computation 
may be time-consuming, and a limiting N can be specified 
in the Options dialog that determines at which sample size 
G*Power switches to large sample approximations.

Also new in G*Power 3 is an exact procedure to calcu-
late the power for the McNemar test. The null hypothesis of 
this test states that the proportions of successes are identi-
cal in two dependent samples. Figure 5 shows the structure 
of the underlying design: A binary response is sampled 
from the same subject or a matched pair in a standard con-
dition and in a treatment condition. The null hypothesis, 

s  t, is formally equivalent to the hypothesis for the 
odd ratio: OR  12/ 21  1. To fully specify H1, we need 
to specify not only the odds ratio but also the proportion 
of discordant pairs ( D)—that is, the expected proportion 
of responses that differ in the standard and the treatment 
conditions. The exact procedure used in G*Power 3 calcu-
lates the unconditional power for the exact conditional test, 
which calculates the power conditional on the number of 
discordant pairs (nD). Let p(nD  i) be the probability that 
the number of discordant pairs is i. Then, the unconditional 
power is the sum over all i  {0, . . . , N} of the conditional 
power for nD  i weighted with p(nD  i). This procedure 
is very efficient, but for very large sample sizes the exact 
computation may take too much time. Again, a limiting N 
that determines at which sample size G*Power switches to 
a large sample approximation can be specified in the Op-
tions dialog. The large sample approximation calculates 

Table 7 
Test Statistics Used in Tests of the Difference Between Two Independent Proportions

No.  Name  Statistic

1 z test pooled variance
z

n n
nˆ ˆ

ˆ ; ˆ ˆ ˆ ; ˆ
ˆ

1 2

1 2

11 1 1 1 2 2

1 2

n
n n

ˆ

2 z test pooled variance
with continuity
correction z

k
n n

k

ˆ ˆ

ˆ ; ˆ (
1 2

1 22
1 1

see No.1);
11
1

lower tail
upper tail

3 z test unpooled variance
z

n n

ˆ ˆ
ˆ ; ˆ

ˆ ˆ ˆ ˆ
1 2 1 1

1

2 2

2

1 1

4 z test unpooled variance
with continuity
correction z

k
n n

k

ˆ ˆ

ˆ ; ˆ (
1 2

1 22
1 1

see No. 3);
11
1

lower tail
upper tail

5 Mantel–Haenszel test
z

x E x

V x
E x

n x x
N

V x
n n1 1

1
1

1 1 2
1

1 2; ;
xx x N x x

N N
1 2 1 2

2 1( )

6 Likelihood ratio
(Upton, 1982) lr

t x t x t x t x t N
2

1 11 2 1 2 ( ) . . .
. . . tt n t n t x x t N x x

t x
1 2 1 2 1 2

; ( ) :: ln( )x x

7 t test with df  N  2 
(D’Agostino et al., 1988) t x x x x N

N n x x nN 2 1 2 2 1
2 1 1 1

1 1 2
1 xx x2 21

Note—xi, success frequency in group i; ni, sample size in group i; N  n1  n2, total sample size; ˆ i  xi/ni. The 
z tests in the table are more commonly known as 2 tests (the equivalent z test is used to provide two-sided tests).
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the power on the basis of an ordinary one-sample binomial 
test with Bin(N D, 0.5) as the distribution under H0 and 
Bin[N D, OR/(1  OR)] as the H1 distribution.

Tests for Variances
Table 9 summarizes important properties of the two 

procedures for testing hypotheses on variances that are 
currently supported by G*Power 3. In the one-group case, 

the null hypothesis that the population variance 2 has a 
specified value c is tested. The variance ratio 2/c is used 
as the effect size. The central and noncentral distributions, 
corresponding to H0 and H1, respectively, are central 2 
distributions with N  1 dfs (because H0 and H1 are based 
on the same mean). To compare the variance distributions 
under both hypotheses, the H1 distribution is scaled with 
the value r postulated for the ratio 2/c in the alternate 

 Standard

Treatment Yes No
Yes 11 12 t

No 21 22 1  t

s 1  s 1

Proportion of discordant pairs: D  12  21

Hypothesis: s  t or, equivalently, 12  21

Figure 5. Matched binary response design (McNemar test).

Table 8 
Test Statistics Used in Tests of the Difference With Offset Between Two Independent Proportions

No.  Name  Statistic

1 z test pooled variance
z n n

nˆ ˆ
ˆ ; ˆ ˆ ˆ / / ; ˆ

ˆ
1 2

1 2
11 1 1 1 2 2

1 2

n
n n

ˆ

2 z test pooled variance with
continuity correction z

k n n
k

ˆ ˆ / / /
ˆ ; ˆ (1 2 1 22 1 1

see No.1);
1
1

lower tail
upper tail

3 z test unpooled variance
z n n

ˆ ˆ
ˆ ; ˆ ˆ ˆ / ˆ ˆ /1 2

1 1 1 2 21 1 22

4 z test unpooled variance with
continuity correction z

k n n
k

ˆ ˆ / / /
ˆ ; ˆ (1 2 1 22 1 1

see No. 3);
1
1

lower tail
upper tail

5 t test with df  N  2
(D’Agostino et al., 1988)

t x n x x x n K

K N

N 2 1 1 2 2 1 11 1 ;

( 22 1 12 1 1 1 2 2) / N n x x n x x

6 Likelihood score ratio (difference)
Miettinen & Nurminen (1985)
Farrington & Manning (1990)
Gart & Nam (1990)

z n n
ˆ ˆ

ˆ ; ˆ / /1 2
1 1 1 2 2 21 1 K~ ~ ~ ~

Miettinen & Nurminen: K  N/(N  1); Farrington & Manning: K  1 
 ~

1  2u cos(w)  b/(3a);  ~ 2   ~ 1  
  n2/n1; a  1  ; b  [1    ˆ 1   ˆ 2  (   2)]

c  2  (2 ˆ1    1)   ˆ 1   ˆ 2; d   ˆ 1 (1  )
v  b3/(3a)3  bc/(6a2)  d/(2a); w  [3.14159  cos 1(v/u3)]/3
u  sgn(v)  

______________
  b2/(3a)2  c/(3a)  

Skewness corrected z  (Gart & Nam, 1990); z according to Farrington & Manning:
z   [ 

_____________
  1  4 (  z)    1]/2 ; V  [ ~

1(1   ~ 1)/n1   ~ 2(1   ~ 2)/n2] 1

  V2/3/6[ ~
1(1   ~ 1)(1  2 ~

1)/n1   ~ 2(1   ~ 2)(1  2 ~
2)/n2]

7 Likelihood score ratio (risk ratio) 
Miettinen & Nurminen (1985)
Farrington & Manning (1990)
Gart & Nam (1988)

z n n
ˆ ˆ

ˆ ; ˆ / /1 2
1 1 1

2
2 2 21 1 K~ ~ ~ ~

Miettinen & Nurminen: K  N/(N  1); Farrington & Manning: K  1 

1 2 2

2
1 2

1

4

2
; ;

b b N x x

N
b n x x n2 1 2

~ ~ ~

Skewness corrected z  (Gart & Nam, 1988); z according to Farrington & Manning: 
z   [ 

_____________
  1  4 (  z)    1]/2 ; V  (1   ~ 1)/( ~

1n1)  (1   ~ 2)/( ~
2n2)

  1/(6V2/3)[(1   ~ 1)(1  2 ~
1)/(n1

 ~
1)2  (1   ~ 2)(1  2 ~

2)/(n2
 ~

2)2]

8 Likelihood score ratio (odds ratio) 
Miettinen & Nurminen (1985) z

ˆ / ˆ /1 1 1 1 2 2 2 21 1

1 1 1 11 1 1 2 2 2/ /n n K

~ ~ ~ ~ ~

~ ~ ~ ~

~

Miettinen & Nurminen: K  N/(N  1); Farrington & Manning: K  1
 ~

1   ~ 2 /[1   ~ 2(   1)];  ~ 2  [ b   
______________

  b2  4a(x1  x2)  ]/(2a)
a  n2(   1); b  n1   n2  (x1  x2)(   1)

Note—xi, success frequency in group i; ni, sample size in group i; N  n1  n2, total sample size; ˆ i  xi/ni; , difference between 
proportions postulated in H0; , risk ratio postulated in H0; , odds ratio postulated in H0.
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hypothesis—that is, the noncentral distribution is r 2
N 1 

(Ostle & Malone, 1988). In the two-groups case, H0 states 
that the variances in two populations are identical ( 2/

1  1). As in the one-sample case, two central F distri-
butions are compared, the H1 distribution being scaled by 
the value of the variance ratio 2/ 1 postulated in H1.

Generic Tests
Besides the specific routines described in Tables 2–9 

that cover a considerable part of the tests commonly used, 
G*Power 3 provides “generic” power analysis routines 
that may be used for any test based on the t, F, 2, z, or 
binomial distribution. In generic routines, the parameters 
of the central and noncentral distributions are specified 
directly.

To demonstrate the uses and limitations of these generic 
routines, we will show how to do a two-tailed power analy-
sis for the one-sample t test using the generic routine. The 
results can be compared with those of the specific rou-
tine available in G*Power for that test. First, we select the 
“t tests” family and then “Generic t test” (the generic test 
option is always located at the end of the list of tests). Next, 
we select “Post hoc” as the type of power analysis. We 
choose a two-tailed test and .05 as  error probability. We 
now need to specify the noncentrality parameter  and the 
degrees of freedom for our test. We look up the definitions 
for the one-sample test in Table 3 and find that   d 

__
 N    

and df  N  1. Assuming a medium effect of d  0.5 
and N  25, we arrive at   0.5 · 5  2.5 and df  24. 
After inserting these values and clicking on “Calculate,” 
we obtain a power of 1    .6697. The critical value 
t  2.0639 corresponds to the specified . In this post hoc 
power analysis, the generic routine is almost as simple as 
the specific routine. The main disadvantage of the generic 
routines is, however, that the dependence of the noncen-
trality parameter on the sample size is implicit. As a con-
sequence, we cannot perform a priori analyses automati-
cally. Rather, we need to iterate N by hand until we find an 
appropriate power value.

STATISTICAL METHODS AND  
NUMERICAL ALGORITHMS

The subroutines used to compute the distribution func-
tions (and the inverse) of the noncentral t, F, 2, z, and 
binomial distributions are based on the C version of the 

DCDFLIB (available from www.netlib.org/random/), 
which was slightly modified for our purposes. G*Power 3 
does not provide the approximate power analyses that 
were available in the speed mode of G*Power 2. Two ar-
guments guided us in supporting exact power calculations 
only. First, four-digit precision of power calculations may 
be mandatory in many applications. For example, both 
compromise power analyses for very large samples, and 
error probability adjustments in case of multiple tests of 
significance may result in very small values of  or  
(Westermann & Hager, 1986). Second, as a consequence 
of improved computer technology, exact calculations have 
become so fast that the speed gain associated with ap-
proximate power calculations is not even noticeable. Thus, 
from a computational standpoint, there is little advantage 
to using approximate rather than exact methods (cf. Brad-
ley, Russell, & Reeve, 1998).

PROGRAM AVAILABILITY  
AND INTERNET SUPPORT

To summarize, G*Power 3 is a major extension of, and 
improvement over, G*Power 2 in that it offers easy-to-
apply power analyses for a much larger variety of common 
statistical tests. Program handling is more flexible, easier 
to understand, and more intuitive than in G*Power 2, 
reducing the risk of erroneous applications. The added 
graphical features should be useful for both research and 
teaching purposes. Thus, G*Power 3 is likely to become 
a useful tool for empirical researchers and students of ap-
plied statistics.

Like its predecessor, G*Power 3 is a noncommercial 
program that can be downloaded free of charge. Copies of 
the Mac and Windows versions are available only at www 
.psycho.uni-duesseldorf.de/abteilungen/aap/gpower3. 
Users interested in distributing the program in another 
way must ask for permission from the authors. Commer-
cial distribution is strictly forbidden.

The G*Power 3 Web page offers an expanding Web-
based tutorial describing how to use the program, along 
with examples. Users who let us know their e-mail ad-
dresses will be informed of updates. Although considerable 
effort has been put into program development and evalu-
ation, there is no warranty whatsoever. Users are asked to 
kindly report possible bugs and difficulties in program 
handling to gpower-feedback@uni-duesseldorf.de.

Table 9 
Tests for Variances

Test Null Other
Test  Family  Hypothesis  Effect Size  Parameters  Noncentrality Parameter

Difference from
constant (one
sample case)

2 tests 2
1

c
Variance ratio

r
c

2
  0

(H1: central 2 distribution, 
scaled with r)
df  N  1

Inequality of two 
variances

F tests
2
2

1
2

1
Variance ratio

r 2
2

1
2

  0
(H1: central F distribution, 
scaled with r)
df1  n1  1

          df2  n2  1



190    FAUL, ERDFELDER, LANG, AND BUCHNER

AUTHOR NOTE

Manuscript preparation was supported by Grant SFB 504 (Project 
A12) from the Deutsche Forschungsgemeinschaft and a grant from the 
state of Baden-Württemberg, Germany (Landesforschungsprogramm 
“Evidenzbasierte Stressprävention”). Correspondence concerning this 
article should be addressed to F. Faul, Institut für Psychologie, Christian-
 Albrechts-Universität, Olshausenstr. 40, D-24098 Kiel, Germany, or 
to E. Erdfelder, Lehrstuhl für Psychologie III, Universität Mannheim, 
Schloss Ehrenhof Ost 255, D-68131 Mannheim, Germany (e-mail: ffaul@
psychologie.uni-kiel.de or erdfelder@psychologie.uni-mannheim.de).

REFERENCES

Akkad, D. A., Jagiello, P., Szyld, P., Goedde, R., Wieczorek, S., 
Gross, W. L., & Epplen, J. T. (2006). Promoter polymorphism 
rs3087456 in the MHC class II transactivator gene is not associated 
with susceptibility for selected autoimmune diseases in German pa-
tient groups. International Journal of Immunogenetics, 33, 59-61.

Back, M. D., Schmukle, S. C., & Egloff, B. (2005). Measuring task-
switching ability in the Implicit Association Test. Experimental Psy-
chology, 52, 167-179.

Baeza, J. A., & Stotz, W. (2003). Host-use and selection of differ-
ently colored sea anemones by the symbiotic crab Allopetrolisthes 
spinifrons. Journal of Experimental Marine Biology & Ecology, 284, 
25-39.

Barabesi, L., & Greco, L. (2002). A note on the exact computation 
of the Student t, Snedecor F, and sample correlation coefficient dis-
tribution functions. Journal of the Royal Statistical Society, 51D, 
105-110.

Berti, S., Münzer, S., Schröger, E., & Pechmann, T. (2006). Differ-
ent interference effects in musicians and a control group. Experimen-
tal Psychology, 53, 111-116.

Bradley, D. R., Russell, R. L., & Reeve, C. P. (1998). The accuracy 
of four approximations to noncentral F. Behavior Research Methods, 
Instruments, & Computers, 30, 478-500.

Bredenkamp, J. (1969). Über die Anwendung von Signifikanztests bei 
Theorie-testenden Experimenten [The application of significance tests 
in theory-testing experiments]. Psychologische Beiträge, 11, 275-285.

Bredenkamp, J., & Erdfelder, E. (1985). Multivariate Varianzanalyse 
nach dem V-Kriterium [Multivariate analysis of variance based on the 
V-criterion]. Psychologische Beiträge, 27, 127-154.

Buchner, A., Erdfelder, E., & Faul, F. (1996). Teststärkeanalysen 
[Power analyses]. In E. Erdfelder, R. Mausfeld, T. Meiser, & 
G. Rudinger (Eds.), Handbuch Quantitative Methoden [Handbook of 
quantitative methods] (pp. 123-136). Weinheim, Germany: Psycholo-
gie Verlags Union.

Buchner, A., Erdfelder, E., & Faul, F. (1997). How to use G*Power 
[Computer manual]. Available at www.psycho.uni-duesseldorf.de/
aap/projects/gpower/how_to_use_gpower.html.

Busbey, A. B. I. (1999). Macintosh shareware/freeware earthscience 
software. Computers & Geosciences, 25, 335-340.

Cohen, J. (1988). Statistical power analysis for the behavioral sciences 
(2nd ed.). Hillsdale, NJ: Erlbaum.

D’Agostino, R. B., Chase, W., & Belanger, A. (1988). The appropri-
ateness of some common procedures for testing the equality of two in-
dependent binomial populations. American Statistician, 42, 198-202.

Erdfelder, E. (1984). Zur Bedeutung und Kontrolle des -Fehlers bei 
der inferenzstatistischen Prüfung log-linearer Modelle [Significance 
and control of the  error in statistical tests of log-linear models]. 
Zeitschrift für Sozialpsychologie, 15, 18-32.

Erdfelder, E., Buchner, A., Faul, F., & Brandt, M. (2004). GPOWER: 
Teststärkeanalysen leicht gemacht [Power analyses made easy]. In 
E. Erdfelder & J. Funke (Eds.), Allgemeine Psychologie und deduktivis-
tische Methodologie [Experimental psychology and deductive method-
ology] (pp. 148-166). Göttingen: Vandenhoeck & Ruprecht.

Erdfelder, E., Faul, F., & Buchner, A. (1996). GPOWER: A general 
power analysis program. Behavior Research Methods, Instruments, & 
Computers, 28, 1-11.

Erdfelder, E., Faul, F., & Buchner, A. (2005). Power analysis for 
categorical methods. In B. S. Everitt & D. C. Howell (Eds.), Encyclo-
pedia of statistics in behavioral science (pp. 1565-1570). Chichester, 
U.K.: Wiley.

Farrington, C. P., & Manning, G. (1990). Test statistics and sample 
size formulae for comparative binomial trials with null hypothesis of 
non-zero risk difference or non-unity relative risk. Statistics in Medi-
cine, 9, 1447-1454.

Field, A. P. (2005). Discovering statistics with SPSS (2nd ed.). London: 
Sage.

Fleiss, J. L. (1981). Statistical methods for rates and proportions (2nd 
ed.). New York: Wiley.

Frings, C., & Wentura, D. (2005). Negative priming with masked 
distractor-only prime trials: Awareness moderates negative priming. 
Experimental Psychology, 52, 131-139.

Gart, J. J., & Nam, J. (1988). Approximate interval estimation of the 
ratio in binomial parameters: A review and correction for skewness. 
Biometrics, 44, 323-338.

Gart, J. J., & Nam, J. (1990). Approximate interval estimation of the 
difference in binomial parameters: Correction for skewness and ex-
tension to multiple tables. Biometrics, 46, 637-643.

Geisser, S., & Greenhouse, S. W. (1958). An extension of Box’s re-
sults on the use of the F distribution in multivariate analysis. Annals 
of Mathematical Statistics, 29, 885-891.

Gerard, P. D., Smith, D. R., & Weerakkody, G. (1998). Limits of 
retrospective power analysis. Journal of Wildlife Management, 62, 
801-807.

Gigerenzer, G., Krauss, S., & Vitouch, O. (2004). The null ritual: 
What you always wanted to know about significance testing but were 
afraid to ask. In D. Kaplan (Ed.), The SAGE handbook of quantitative 
methodology for the social sciences (pp. 391-408). Thousand Oaks, 
CA: Sage.

Gleissner, U., Clusmann, H., Sassen, R., Elger, C. E., & Helm-
staedter, C. (2006). Postsurgical outcome in pediatric patients with 
epilepsy: A comparison of patients with intellectual disabilities, sub-
average intelligence, and average-range intelligence. Epilepsia, 47, 
406-414.

Goldstein, R. (1989). Power and sample size via MS/PC-DOS comput-
ers. American Statistician, 43, 253-262.

Hager, W. (2006). Die Fallibilität empirischer Daten und die Notwen-
digkeit der Kontrolle von falschen Entscheidungen [The fallibility 
of empirical data and the need for controlling for false decisions]. 
Zeitschrift für Psychologie, 214, 10-23.

Haseman, J. K. (1978). Exact sample sizes for use with the Fisher–Irwin 
test for 2  2 tables. Biometrics, 34, 106-109.

Hoenig, J. N., & Heisey, D. M. (2001). The abuse of power: The perva-
sive fallacy of power calculations for data analysis. American Statisti-
cian, 55, 19-24.

Hoffmann, J., & Sebald, A. (2005). Local contextual cuing in visual 
search. Experimental Psychology, 52, 31-38.

Huynh, H., & Feldt, L. S. (1970). Conditions under which mean square 
ratios in repeated measurements designs have exact F-distribution. 
Journal of the American Statistical Association, 65, 1582-1589.

Keppel, G., & Wickens, T. D. (2004). Design and analysis. A research-
er’s handbook (4th ed.). Upper Saddle River, NJ: Pearson Education 
International.

Kornbrot, D. E. (1997). Review of statistical shareware G*Power. Brit-
ish Journal of Mathematical & Statistical Psychology, 50, 369-370.

Kromrey, J., & Hogarty, K. Y. (2000). Problems with probabilistic 
hindsight: A comparison of methods for retrospective statistical power 
analysis. Multiple Linear Regression Viewpoints, 26, 7-14.

Lenth, R. V. (2001). Some practical guidelines for effective sample size 
determination. American Statistician, 55, 187-193.

Levin, J. R. (1997). Overcoming feelings of powerlessness in “aging” 
researches: A primer on statistical power in analysis of variance de-
signs. Psychology & Aging, 12, 84-106.

McKeon, J. J. (1974). F approximations to the distribution of Hotel-
ling’s T0

2. Biometrika, 61, 381-383.
Mellina, E., Hinch, S. G., Donaldson, E. M., & Pearson, G. (2005). 

Stream habitat and rainbow trout (Oncorhynchus mykiss) physiologi-
cal stress responses to streamside clear-cut logging in British Colum-
bia. Canadian Journal of Forest Research, 35, 541-556.

Miettinen, O., & Nurminen, M. (1985). Comparative analysis of two 
rates. Statistics in Medicine, 4, 213-226.

Müller, J., Manz, R., & Hoyer, J. (2002). Was tun, wenn die Test-
stärke zu gering ist? Eine praktikable Strategie für Prä–Post-Designs 
[What to do if statistical power is low? A practical strategy for pre–



G*POWER 3    191

post-designs]. Psychotherapie, Psychosomatik, Medizinische Psy-
chologie, 52, 408-416.

Muller, K. E., & Barton, C. N. (1989). Approximate power for repeated-
measures ANOVA lacking sphericity. Journal of the American Statistical 
Association, 84, 549-555.

Muller, K. E., LaVange, L. M., Landesman-Ramey, S., & Ramey, 
C. T. (1992). Power calculations for general linear multivariate models 
including repeated measures applications. Journal of the American 
Statistical Association, 87, 1209-1226.

Muller, K. E., & Peterson, B. L. (1984). Practical methods for com-
puting power in testing the multivariate general linear hypothesis. 
Computational Statistics & Data Analysis, 2, 143-158.

Myers, J. L., & Well, A. D. (2003). Research design and statistical 
analysis (2nd ed.). Mahwah, NJ: Erlbaum.

O’Brien, R. G., & Kaiser, M. K. (1985). MANOVA method for analyz-
ing repeated measures designs: An extensive primer. Psychological 
Bulletin, 97, 316-333.

O’Brien, R. G., & Muller, K. E. (1993). Unified power analysis for 
t-tests through multivariate hypotheses. In L. K. Edwards (Ed.), Ap-
plied analysis of variance in behavioral science (pp. 297-344). New 
York: Dekker.

O’Brien, R. G., & Shieh, G. (1999). Pragmatic, unifying algorithm 
gives power probabilities for common F tests of the multivariate gen-
eral linear hypothesis. Available at www.bio.ri.ccf.org/UnifyPow.

Ortseifen, C., Bruckner, T., Burke, M., & Kieser, M. (1997). An 
overview of software tools for sample size determination. Informatik, 
Biometrie & Epidemiologie in Medizin & Biologie, 28, 91-118.

Ostle, B., & Malone, L. C. (1988). Statistics in research: Basic con-
cepts and techniques for research workers (4th ed.). Ames: Iowa State 
Press.

Pillai, K. C. S., & Mijares, T. A. (1959). On the moments of the trace 
of a matrix and approximations to its distribution. Annals of Math-
ematical Statistics, 30, 1135-1140.

Pillai, K. C. S., & Samson, P., Jr. (1959). On Hotelling’s generaliza-
tion of T2. Biometrika, 46, 160-168.

Quednow, B. B., Kühn, K.-U., Stelzenmueller, R., Hoenig, K., 
Maier, W., & Wagner, M. (2004). Effects of serotonergic and norad-
renergic antidepressants on auditory startle response in patients with 
major depression. Psychopharmacology, 175, 399-406.

Rao, C. R. (1951). An asymptotic expansion of the distribution of 
Wilks’s criterion. Bulletin of the International Statistical Institute, 
33, 177-180.

Rasch, B., Friese, M., Hofmann, W. J., & Naumann, E. (2006a). 
Quantitative Methoden 1: Einführung in die Statistik (2. Auflage) 
[Quantitative methods 1: Introduction to statistics (2nd ed.)]. Heidel-
berg, Germany: Springer.

Rasch, B., Friese, M., Hofmann, W. J., & Naumann, E. (2006b). 
Quantitative Methoden 2: Einführung in die Statistik (2. Auflage) 
[Quantitative methods 2: Introduction to statistics (2nd ed.)]. Heidel-
berg, Germany: Springer.

Rencher, A. C. (1998). Multivariate statistical inference and applica-
tions. New York: Wiley.

Richardson, J. T. E. (1996). Measures of effect size. Behavior Research 
Methods, Instruments, & Computers, 28, 12-22.

Scheffé, H. (1959). The analysis of variance. New York: Wiley.
Schwarz, W., & Müller, D. (2006). Spatial associations in number-

related tasks: A comparison of manual and pedal responses. Experi-
mental Psychology, 53, 4-15.

Sheppard, C. (1999). How large should my sample be? Some quick 
guides to sample size and the power of tests. Marine Pollution Bul-
letin, 38, 439-447.

Shieh, G. (2003). A comparative study of power and sample size cal-
culations for multivariate general linear models. Multivariate Behav-
ioral Research, 38, 285-307.

Smith, R. E., & Bayen, U. J. (2005). The effects of working memory 
resource availability on prospective memory: A formal modeling ap-
proach. Experimental Psychology, 52, 243-256.

Steidl, R. J., Hayes, J. P., & Schauber, E. (1997). Statistical power 
analysis in wildlife research. Journal of Wildlife Management, 61, 
270-279.

Suissa, S., & Shuster, J. J. (1985). Exact unconditional sample sizes 
for 2  2 binomial trial. Journal of the Royal Statistical Society A, 
148, 317-327.

Thomas, L., & Krebs, C. J. (1997). A review of statistical power analysis 
software. Bulletin of the Ecological Society of America, 78, 126-139.

Upton, G. J. G. (1982). A comparison of alternative tests for the 2  2 
comparative trial. Journal of the Royal Statistical Society A, 145, 
86-105.

Westermann, R., & Hager, W. (1986). Error probabilities in educa-
tional and psychological research. Journal of Educational Statistics, 
11, 117-146.

Zumbo, B. D., & Hubley, A. M. (1998). A note on misconceptions 
concerning prospective and retrospective power. The Statistician, 47, 
385-388.

NOTES

1. The observed power is reported in many frequently used computer 
programs (e.g., the MANOVA procedure of SPSS).

2. We recommend checking the degrees of freedom reported by 
G*Power by comparing them, for example, with those reported by the 
program used to analyze the sample data. If the degrees of freedom do 
not match, the input provided to G*Power is incorrect and the power 
calculations do not apply.

3. Plots of the central and noncentral distributions are shown only 
for tests based on the t, F, z, 2, or binomial distribution. No plots are 
shown for tests that involve an enumeration procedure (e.g., the McNe-
mar test).

4. We thank Dave Kenny for making us aware of the fact that the 
t test (correlation) power analyses of G*Power 2 are correct only in the 
point–biserial case (i.e., for correlations between a binary variable and 
a continuous variable, the latter being normally distributed for each 
value of the binary variable). For correlations between two continu-
ous variables following a bivariate normal distribution, the t test (cor-
relation) procedure of G*Power 2 overestimates power. For this reason, 
G*Power 3 offers separate power analyses for point–biserial correlations 
(in the t family of distributions) and correlations between two normally 
distributed variables (in the exact distribution family). However, power 
values usually differ only slightly between procedures. To illustrate, as-
sume we are interested in the power of a two-tailed test of H0:   .00 for 
continuously distributed measures derived from two Implicit Association 
Tests (IATs) differing in content. Assume further that, due to method-
specific variance in both versions of the IAT, the true Pearson correlation 
is actually   .30 (effect size). Given   .05 and N  57 (see Back, 
Schmukle, & Egloff, 2005, p. 173), an exact post hoc power analysis for 
“Correlations: Differences from constant (one sample case)” reveals the 
correct power value of 1    .63. Choosing the incorrect “Correla-
tion: point biserial model” procedure from the t test family would result 
in 1    .65.
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